Application of a Simple Three-Parameter Model to Titration Data for Some Linear Polyelectrolytes

Erik Högfeldt,^a Tohru Miyajima,^b Jacob A. Marinsky^c and Mamoun Muhammed^a

^aDepartment of Inorganic Chemistry, The Royal Institute of Technology, S-100 44 Stockholm, Sweden, ^bChemistry Department, Kyushu University, Hakozaki, Fukuoka, Japan and ^cChemistry Department, State University of New York at Buffalo, Buffalo, NY 14214, USA

Högfeldt, E., Miyajima, T., Marinsky, J. A. and Muhammed, M., 1989. Application of a Simple Three-Parameter Model to Titration Data for some Linear Polyelectrolytes. – Acta Chem. Scand. 43: 496–499.

In recent years a simple three-parameter model has proved useful in summarizing both thermodynamic and water uptake data for liquid and solid ion exchangers, both organic and inorganic. $^{1-5}$. In the present paper the model is applied to linear polyelectrolytes, i.e. one-phase systems. The data selected are $\alpha,\,pH$ values from titrations on linear carboxymethyldextran, C_mD_x , by Miyajima, and similar data for linear polyacrylic acid by Nagasawa et al. 6

Application of the model to cross linked carboxymethyldextran (Sephadex C-25 and C-50) has been published elsewhere.⁷

The model

Consider the reaction

$$RAH \rightleftharpoons RA^- + H^+ (RAH = polyelectrolyte)$$
 (1)

The law of mass action gives for reaction (1)

$$pK_a = pH + \log\left(\frac{1-\alpha}{\alpha}\right) \tag{2}$$

where

$$\alpha = [RA^{-}]/([RAH] + [RA^{-}])$$
 (3)

Application of the three-parameter model gives

$$pK_a = pK_a(1)\alpha^2 + pK_a(0)(1-\alpha)^2 + 2pK_{am}\alpha(1-\alpha)$$
 (4)

It is convenient to use the equation

$$pK_a = pK_a(1)\alpha + pK_a(0)(1-\alpha) + B\alpha(1-\alpha)$$
 (5)

The experimental data can be fitted to eqn. (5) by least-squares methods. The third parameter pK_{am} is then obtained from

$$pK_{am} = \frac{1}{2}[pK_a(0) + pK_a(1) + B]$$
 (6)

 $pK_a(0)$ and $pK_a(1)$ are the limiting values of pK_a for $\alpha = 0$ and $\alpha = 1$.

The integral free energy of reaction (1) expressed as a thermodynamic equilibrium constant pK_a is obtained from

$$p\overline{K}_{a} = \int_{0}^{1} pK(\alpha)d\alpha = \frac{1}{3}[pK_{a}(0) + pK_{a}(1) + pK_{am}]$$
 (7)

Experimental

The titrations were carried out as emf titrations of C_mD_x of two different degrees of substitution, DS. This quantity is related to the distance between the carboxylate groups, i.e. the charge density.

The ionic strength was kept at 0.100 M (Na)Cl and the temperature at 298±1 K. The concentration of $C_m D_x$ was 1.00 mM.

For defining pH, Miyajima used the Stockholm school definition with $pH = -\log[H^+]$ and the glass electrode calibrated in terms of hydrogen ion concentration in the ionic medium used.

Nagasawa *et al.* defined pH = $-\log\{H^+\}$ using standard buffers. Their work was carried out at 288 ± 2 K and with ionic strengths ranging from 0.005 to 0.100 M (NaCl). The concentration of polyacrylic acid varied between 0.00829 M and 0.0419 M. α , pH data were read from Fig. 4 in Ref. 6.

Results

Carboxymethyldextran. In Table 1 experimental and computed pK_a values are compared. Some statistical quantities are also given in order to give an idea of the fit obtained.

In Fig. 1, pK_a is plotted against α for the two degrees of substitution. The parameters obtained by least-squares fit-

Table 1. Comparison between experimental and calculated p K_a values for linear carboxymethyldextran. $T = 298 \pm 1$ K, $I = 0.100$ M
(Na)ClO₄.

α	р <i>К_а</i> exp	p <i>K</i> _a calc	Some statistical quantities			
DS = 0.96						
0.20	3.478	3.483	Residual squares sum	$= 1.738 \cdot 10^{-3}$		
0.30	3.563	3.562	Mean residual	= 0.0110		
0.40	3.645	3.634	Standard deviation	= 0.0186		
0.50	3.714	3.701	Hamilton R factor/%	= 0.396		
0.60	3.727	3.762				
0.70	3.825	3.816				
0.80	3.874	3.864				
0.90	3.903	3.907				
DS = 1.26						
0.10	3.430	3.445	Residual squares sum	$= 6.880 \cdot 10^{-4}$		
0.20	3.572	3.558	Mean residual	= 0.0078		
0.30	3.668	3.660	Standard deviation	= 0.0107		
0.40	3.753	3.749	Hamilton R factor/%	= 0.231		
0.50	3.820	3.827				
0.60	3.884	3.892				
0.70	3.943	3.946				
0.80	3.984	3.988				
0.90	4.025	4.018				

ting to eqn. (5) and use of eqns. (6) and (7) to obtain pK_{am} and $p\overline{K}_a$ are given in Table 3. From Table 1 it is evident that a satisfactory fit has been obtained.

Polyacrylic acid. First, data for each ionic strength were fitted individually according to the model. Each parameter was fitted by the expression

$$pK_a = a + bI^{1/2} + cI$$

Fig. 1. p K_a vs. α for carboxymethyldextran. \bigcirc : DS = 0.96. \bullet : DS = 1.26. The curves were calculated from the model with the parameters given in Table 3.

giving

$$pK_{a}(0) = 5.1466 - 4.4692I^{1/2} + 7.1480I$$

$$pK_{a}(1) = 7.9302 - 8.8565I^{1/2} + 12.3311I$$

$$pK_{am} = 7.2171 - 9.4919I^{1/2} + 12.0023I$$
(8a-c)

In this way 15 parameters were reduced to 9. In Table 2, experimental and computed pK_a values are compared. As seen, a rather satisfactory fit is obtained. The parameters obtained from eqns (8a-c) are given in Table 3, together with pK_a from eqn. (7).

Concluding remarks

The fit obtained shows that the three-parameter model applies also to non-crosslinked polymers. The model has been found to apply to liquid cation exchangers, ⁸⁻¹¹ solid cation resins, ¹⁻⁴ anion resins, ¹² and inorganic cation and anion exchangers. ^{5.13}

That one and the same model can be applied to such a wide variety of substances implies that the *variation* in excess free energy is a site effect dependent mainly upon nearest-neighbour interactions as indicated by the model. The model provides a good way of summarizing data as well as predicting titrations, and is a useful alternative to more sophisticated models. ¹⁴⁻¹⁶

SHORT COMMUNICATION

Table 2. Comparison between experimental and calculated p K_a values for polyacrylic acid. $T = 288 \pm 2$ K. Data from Ref. 6.

α	р <i>К</i> _а exp	$p \mathcal{K}_{a}$ calc	Some statistical criteria	
/ = 0.005 M (Na)CI			
0.1	5.18	5.204	Residual squares sum	$= 1.0281 \cdot 10^{-2}$
0.2	5.56	5.523	Mean residual	= 0.0294
0.3	5.87	5.822	Standard deviation	= 0.0414
0.4	6.12	6.101	Hamilton R factor/%	= 0.534
0.5	6.35	6.361		
0.6	6.59	6.601		
0.7	6.76	6.822		
0.8	7.04	7.023		
0.9	7.24	7.204		
= 0.01 M (Na)	CI			
0.1	5.00	5.086	Residual squares sum	$= 1.478 \cdot 10^{-2}$
0.2	5.41	5.384	Mean residual	= 0.0316
).3	5.72	5.666	Standard deviation	= 0.0496
).4	5.94	5.931	Hamilton R factor/%	= 0.658
).5	6.18	6.179		
).6	6.40	6.410		
0.7	6.58	6.625		
0.8	6.84	6.823		
).9	7.04	7.004		
= 0.02 M (Na)	OI .			
0.1	4.90	4.943	Residual squares sum	$= 1.454 \cdot 10^{-2}$
).2	5.24	5.215	Mean residual	= 0.0342
0.3	5.53	5.474	Standard deviation	= 0.0492
).4	5.70	5.720	Hamilton R factor/%	= 0.679
0.5	5.94	5.953		
0.6	6.15	6.173		
0.7	6.31	6.380		
).8	6.52	6.574		
0.9	6.76	6.756		
= 0.05 M (Na)	CI			
).1	4.71	4.740	Residual squares sum	$= 1.080 \cdot 10^{-2}$
0.2	5.00	4.968	Mean residual	= 0.0304
0.3	5.24	5.190	Standard deviation	= 0.0424
0.4	5.41	5.406	Hamilton R factor/%	= 0.615
0.5	5.61	5.615		
0.6	5.84	5.818		
0.7	5.97	6.015		
).8).9	6.24 6.44	6.205 6.389		
		0.000		
/ = 0.10 M (Na)		4 644	Decidual acusana acces	_ E 070 40-3
).1 	4.63	4.641 4.834	Residual squares sum Mean residual	$= 5.279 \cdot 10^{-3}$ $= 0.0188$
0.2	4.81 5.06		Mean residual Standard deviation	
0.3	5.06 5.24	5.027 5.219	Standard deviation Hamilton <i>R</i> factor/%	= 0.0297 = 0.446
0.4	5.24 5.41	5.219 5.411	namilion # factor/%	U.440
0.5 0.6	5.41 5.59	5.602		
0.6 0.7	5.74	5.793		
). <i>1</i>).8	5.74 5.99	5.983		
0.9	6.16	6.173		
J. J	0.10	0.173		

Table 3. Parameters obtained by least-squares fitting of experimental data by eqn. (5), and using eqns. (6) and (7).

DS 	T/K	<u> </u>	pK _a (0)	p <i>K</i> _a (1)	pK _{am}	p K a
0.96	298±1	0.100	3.307	3.943	3.777	3.676
1.26	298±1	0.100	3.320	4.036	3.975	3.777
_	288±2	0.005	4.866	7.366	6.606	6.279
_	288±2	0.01	4.771	7.168	6.388	6.109
_	288±2	0.02	4.658	6.924	6.115	5.899
_	288±2	0.05	4.505	6.566	5.695	5.589
_	288±2	0.10	4.448	6.363	5.416	5.409

References

- 1. Högfeldt, E. React. Polym. 2 (1984) 19.
- 2. Högfeldt, E. In: Naden, D. and Streat, M., Eds., Ion Exchange Technology, Ellis Horwood, Chichester 1984, p. 170.
- 3. Högfeldt, E. React. Polym. 7 (1988) 81.
- 4. Högfeldt, E. J. Phys. Chem. 92 (1988) 6475.
- 5. Dabral, S. and Högfeldt, E. Chem. Scr. In press.
- Nagasawa, M., Murase, T. and Kondo, K. J. Phys. Chem. 69 (1965) 4005.
- 7. Högfeldt, E., Miyajima, T. and Muhammed, M. *Talanta. In press.*
- 8. Högfeldt, E. Acta Chem. Scand., Ser. A 33 (1979) 557.
- Högfeldt, E. and Soldatov, V. S. J. Inorg. Nucl. Chem. 41 (1979) 55.

- Kuvaeva, Z. I., Popov, A. V., Soldatov, V. S. and Högfeldt,
 E. Solvent Extr. Ion Exch. 4 (1986) 361.
- 11. Kuvaeva, Z. I., Mikulich, A. V., Popov, A. V. and Högfeldt, E. *Hydrometallurgy 21* (1988) 73.
- 12. Högfeldt, E. and Marcus, Y. Chem. Scr. In press.
- 13. Högfeldt, E., Ruvarac, Lj. and Petković, D. To be published.
- Marinsky, J. A., In: Marinsky, J. A. and Marcus, Y. Ion Exchange and Solvent Extraction, Dekker, New York 1973, p. 227
- 15. Marinsky, J. A. Coord. Chem. Rev. 19 (1976) 125.
- Marinsky, J. A., Lin Fu, G. and Chung, K. J. Phys. Chem. 87 (1983) 3139.

Received February 22, 1989.